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SUMMARY

In this paper a method is developed to define multiple open boundary (OB) conditions in a simplified
vortex settling basin (VSB). In this method, the normal component of the momentum equation is solved at
the OBs, and tangential components of vorticity are calculated by solving vorticity transport equations only
at the OBs. Then the tangential vorticity components are used to construct Neumann boundary conditions
for tangential velocity components. Pressure is set to its ambient value, and the divergence-free condition
is satisfied at these boundaries by employing the divergence as the Neumann condition for the normal-
direction momentum equation. The 3-D incompressible Navier–Stokes equations in a primitive-variable
form are solved using the SIMPLE algorithm. Grid-function convergence tests are utilized to verify the
numerical results. The complicated laminar flow structure in the VSB is investigated, and preliminary
assessment of two popular turbulence models, k–� and k–�, is conducted. Copyright q 2006 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

Swirling flow patterns in hydrocyclones are often used to separate solid from liquid in industrial
processes. A vortex settling basin (VSB) is a similar device that uses vortices induced in a
cylindrical basin/chamber to efficiently extract sediment from diverted water of a river. In a VSB,
flow is introduced tangentially into a cylindrical basin having an orifice at the centre of its bottom.
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Figure 1. Schematic diagram of a vortex settling basin (left) and the simplified model (right).

The combined vortex (combination of free and forced vortices) causes sediment particles which
are heavier than water to move towards the periphery of the chamber due to centrifugal force.
Secondary flows (Rea [1]) move the fluid layer near the basin floor toward the central orifice
(Athar et al. [2]). Since the sediment particles move with the flow along a helical path, they have a
settling length that is longer than the basin dimensions. This feature makes the VSB more efficient
than ordinary settling tanks. A small fraction (about 10%) of inlet flow leaves the domain from
the bottom outlet, and the rest which carries low sediment load exits through an outlet channel as
shown on the left-hand side of Figure 1.

Elaborate studies have been made on different properties of the VSB mostly by physical
modelling. These have emphasized improving efficiency through changing the VSB geometric
configuration and obtaining empirical formulas for design purposes. Paul et al. [3] surveyed
different configurations of the VSB briefly and presented a new configuration to improve the
removal efficiency. Athar et al. [4] presented some formulas to estimate the removal efficiency
based on VSB dimensions and flow properties. Velocity variation within the VSB was also inves-
tigated in different studies. Athar et al. [2] measured velocity components in a VSB; they showed
that flow patterns are different in different segments of the vortex chamber, and inlet and outlets
cause the flow to deviate from a Rankine vortex. Investigation of swirling flow in a hydrocyclone
also showed that the flow is highly turbulent and three-dimensional (Nowakowski et al. [5]). Hence,
three-dimensional numerical simulation is essential to model the VSB with reasonable accuracy.

The multiphase flow (water, air and sediment particles) in a VSB is very complicated, and in
the present paper, which is part of an ongoing program on VSB numerical simulation, the main
emphasis will be on defining appropriate boundary conditions in 3-D and studying flow structure
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in single-phase (water) laminar flow. A preliminary assessment of performance of k–� and k–�
models is also provided for this simplified case.

To perform numerical modelling, the physical domain should be truncated to a finite com-
putational domain. Necessity to truncate the physical domain gives rise to difficulty in defining
boundary conditions at so-called open boundaries (OB). The OBs are portions of the boundary
at which inflow and outflow may coexist, and defining corresponding open boundary conditions
(OBC) is a difficult and important task. These partly depend on the flow outside the compu-
tational domain, which is logically unknown; therefore, some artificial boundary conditions that
may contain additional information typically must be imposed. Whatever these conditions are, they
should be defined such that the numerical model is mathematically well posed, and flow enters and
leaves the computational domain without substantial unphysical effect on flow behaviour within
the computational domain.

Since these OBCs are not set by nature, they are not uniquely defined. The homogeneous
Neumann boundary condition is commonly used at OBs. This type of OBC for the normal velocity
component yields an ill-posed problem because of insufficient information for its specification, as
indicated by Sani and Gresho [6]. Setting pressure equal to the atmospheric value at OBs fixes the
ill-posed problem but sacrifices the divergence free condition on the open boundary (Gresho [7]).
OBCs that have gained considerable popularity compared with others are the so-called non-
reflecting (NR) boundary conditions that take the following form [7]:

��

�t
+ ū

��

�n
= 0 (1)

Here � is any velocity component, and ū is a representative value of the normal velocity at the
exit. In [6] these boundary conditions were applied for different test cases, and it was shown that
results were very case dependent. The homogeneous Neumann boundary condition often leads to
poor results for high Reynolds number flows (Shyy [8] and Behr et al. [9]). However, none of
these OBCs can represent the complicated physics of the VSB outlets. On the other hand, Concha
et al. [10] point out that the best separation in a hydrocyclone occurs near the formation of a ‘rope
discharge’ which is set by outlet velocity angle at the apex. Therefore, to obtain reasonably accurate
results, either the boundaries have to be located far from the area of interest, which increases the
computational cost, or a proper technique should be used to define boundary conditions at the
outlets so as to replicate this complicated discharge.

There is a class of OBCs based on the stress tensor. These lead to a mathematically well-
posed problem, but values for components of this tensor are once again generally unknown,
and a zero stress tensor is usually assumed [6]. This kind of OBC has been used frequently to
define the boundary conditions at hydrocyclone outlets in the context of the finite element method
(Nowakowski and Dyakowski [11], Doby et al. [12]).

The velocity–vorticity formulation of the Navier–Stokes (N.–S.) has also gained some favour due
to its ability to decouple the momentum and continuity equations. Although in this set of equations,
setting OBCs for vorticity is easier, BCs for the velocity components are required to solve the
continuity equation [13]. Bertagnolio [13] used vorticity definition to construct Neumann boundary
conditions for tangential velocity components at the OBs in the context of a velocity–vorticity
formulation.

In the present study a method to construct OBCs for incompressible fluid flow simulations is
implemented to solve the 3-D N.–S. equations in primitive-variable form. In this approach, the
normal component of the momentum equation is solved at the OBs, and tangential components
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of vorticity are calculated by solving the N.–S. equation in a velocity–vorticity formulation only
at the OBs. Then the tangential vorticity components are used as Neumann boundary conditions
for tangential velocity components. The continuity equation is employed to define a BC for the
normal component of velocity on the first grid cell outside the domain. Backward differencing
is used for the vorticity equation wherever it is necessary to avoid introduction of image points.
Pressure is set to its ambient value at the OBs. This set of OBCs results in a well-posed problem
without invoking any unphysical assumptions, and the divergence-free condition is also satisfied
at the OBs. The method is implemented to simulate the flow field in a simplified VSB.

In the remainder of this paper, first the governing equations are recalled, and the boundary
conditions based on the definition of vorticity are explained in detail. Then a numerical procedure
to utilize this approach is presented at the end of Section 2. The third section is devoted to
describing a simplified VSB test case. In the fourth section the laminar flow field within the VSB
and its behaviour near the OBs are investigated, and results of two turbulence models are outlined
in Section 5. A final section presents conclusions drawn from this study.

2. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

The general 3-D incompressible N.–S. equations in primitive-variable form in a domain � bounded
by the Dirichlet portion �D (solid walls and inlets) and the open portion �N are as follows:

�u
�t

+ u · ∇u= − ∇ p + 1

Re
�u + F (2)

∇ · u= 0 (3)

Here u is the velocity vector (u, v, w)T, p is the pressure, Re is the Reynolds number and F
is a body force; ∇ and � are gradient and Laplace operators, respectively. These equations are
subjected to the following boundary conditions:

u=w on �D (4)

where w is the prescribed velocity vector on the Dirichlet part of the boundary; but boundary
conditions for velocity components and pressure on the OBs are usually unknown. Hence, the
first aim of this paper is to define an appropriate procedure to compute these values. For sake
of simplicity we use a right-handed orthonormal vector basis (t1, t2,n) for which t1 and t2 are
tangential to the OBs, and n is the outward normal vector.

2.1. Tangential velocity component boundary conditions

Bertagnolio [13] used vorticity definition as Neumann boundary conditions for the tangential
velocity components in the context of a velocity–vorticity formulation as follows:

�ut1
�n

= +�t2 + �u · n
�t1

on �N (5)

�ut2
�n

= − �t1 + �u · n
�t2

on �N (6)

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 54:1–28
DOI: 10.1002/fld



TO DEFINE CONDITIONS AT MULTIPLE OPEN BOUNDARIES IN A SIMPLIFIED VSB 5

where ut1 , ut2 , �t1 and �t2 are tangential velocity and vorticity components, respectively. These
equations can be easily used as boundary conditions for the tangential velocity components to solve
the N.–S. equations expressed in primitive variables provided that the vorticity components are
available at the outflow boundaries. To calculate these, the vorticity component transport equations
should be solved at the OBs. We remark that it is easy to show that the combination of Equations
(5) and (6) and use of � obtained from the vorticity transport equation automatically collapses to
the conditions for fully developed flow if the velocity field exhibits such features.

2.2. Vorticity transport equation

Taking the curl of Equation (2) yields the following vorticity transport equation:

�x
�t

+ ∇ · (ux) = 1

Re
�x+ ∇ ×F (7)

where x is the vorticity vector. Solving this equation in both t1 and t2 directions provides the
required vorticity components at OBs. Notice that no explicit boundary condition is necessary to
solve Equation (7) except vorticity definition as the curl of the velocity vector, which is calculated
from velocity components obtained at a previous iteration or time step in the interior of �.
Backward differencing is necessary to avoid evaluating vorticity components outside the domain,
details of which are presented in the next section. Since the equations are solved in an iterative
procedure, in the first iteration the vorticity values are calculated based on initial values of the
velocity components at the OBs.

2.3. Boundary condition for pressure and normal component of velocity

So far the boundary conditions for the tangential velocity components have been introduced. How-
ever, boundary conditions for the normal component of velocity and pressure must be prescribed.

The momentum equation in the normal direction is solved to obtain the normal velocity com-
ponent at the OBs. The spatial discretization of this equation introduces a value of the normal
velocity component outside the domain (at an image point, Figure 2) both through the diffusive
and convective terms. This might be handled by neglecting diffusion normal to the boundary and
using a first-order upwind scheme for convective terms in the normal direction. These approxi-
mations result in an equation that is very similar to the NR boundary conditions often used to
derive unknown values at the OBs despite the fact that such an approximation does not completely
represent the physics. Another alternative, used in the current study, is implementing the continuity
equation at the OB to obtain the normal velocity component at the image point. With this method
the normal velocity component is defined so that the divergence-free condition is satisfied at the
OBs. Therefore, pressure can be set to zero (or any appropriate ambient value consistent with
incompressible flow) without any damage to the divergence-free requirement at the OBs while
maintaining well posedness of the elliptic problem for pressure. We emphasize that in contrast to
the true physical situation shown in Figure 1, our simplified model contains no exterior ducting or
piping extending beyond the outlet planes. Hence, the outlet flow immediately encounters ambient
pressure. This is the case for some VSB configurations where flow exits the basin over a spill weir
at the beginning of an outlet channel (see e.g. [3]).
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Figure 2. Typical grid cell on an outflow boundary.

2.4. Numerical procedure

The conservation form of the N.–S. equations in both primitive and velocity–vorticity formulations
are discretized on a structured staggered grid (Figure 2) using a finite-volume approach. The
staggered grid provides a consistent and easy way to calculate vorticity components in the velocity–
vorticity formulation as shown by Liu [14]. At a solid boundary (i.e grid points at the end of a solid
boundary and beginning of an outflow boundary) the vorticity components must be calculated using
the definition of vorticity. For instance, at the bottom surface shown in Figure 2, corresponding to
t1 = 0

�t1 = 0 (8)

�t2 = − �un
�t1

(9)

To evaluate tangential vorticity components at a face corresponding to an image point, backward
differencing is necessary to prevent introduction of velocity values outside the domain. For example,
at the image point shown in Figure 2 we have

�t2(i + 1, j, k) =
(
ut1(i, j, k) − ut1(i − 1, j, k)

�xn

)
− �un

�t1

∣∣∣∣
i+1, j,k

(10)

where �xn is grid spacing in the normal direction. The required normal velocity component at the
image point is calculated using the continuity equation which is applied on the typical boundary
cell shown in Figure 2.

Power-law and centred-difference schemes are used to treat convective and diffusive terms,
respectively. The QUICK scheme is also available to treat convective terms in interior grid cells.
The SIMPLE algorithm of Patankar [15] is used to solve the steady dimensionless N.–S. equations.
The two tangential vorticity transport equations are solved only at the OB after performing the
velocity correction step in the SIMPLE procedure; then the boundary conditions are updated.
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3. A SIMPLIFIED VORTEX SETTLING BASIN PROBLEM

In a basic VSB configuration both inlet and outlet channels are kept in alignment following a straight
line tangent to the vortex chamber. In [3] it is shown that for this case, a deflector (a C-shaped plate
covering one half of the basin periphery) is necessary to improve the removal efficiency, especially
for fine sediment particles. Though the deflector increases the residence time—a positive effect,
it also decreases the strength of secondary flows, which is not satisfactory (Chrysostomou [16]).
Paul et al. [3] recommended a configuration utilizing a counter-clockwise vortex which is more
efficient for coarser sediment particles and obviates the need for a deflector. The experimental
study by Ziaei [17] also indicated that in this counter-clockwise condition, no sediment particles
remained on the basin floor. However, the resulting central vortex is more complicated because the
axis of the air core makes an angle with the vertical direction and is displaced with respect to the
centre of the orifice due to inlet and outlet channel flows; hence, the flow is not axisymmetric with
respect to the vertical direction. In [4] it is shown that a configuration such as depicted in Figure 1
is the most efficient form of VSB device. In this type, a straight inlet channel joins the vortex
chamber tangentially at one side, and the outlet channel is connected tangentially at the point that
is diametrically opposite to the junction of the inlet channel; the resulting vortex is rotating in
a counterclockwise direction. Notice that this is due to geometry and not because of the vortex
circulation direction, per se.

In the present study, we simulate the flow field in a simplified cubic VSB model (unity
side length) with a counter-clockwise vortex caused by a bottom drain port and opposing inlet
and outlet channels. For sake of simplicity, the free surface between air and water that is an
intrinsic physical aspect of VSBs is neglected, and the basin floor is considered flat and coplanar
with the inlet and outlet channels rather than slanted as in typical VSBs. The 3-D view of the
simplified geometry is depicted on the right-hand side of Figure 1. Although this simple geometry
is easy to set up numerically, both in terms of grid generation and applying boundary conditions,
the flow field that results is significantly more complicated due to the corners of this cubical
tank.

In order to examine the OBCs and investigate the basic flow structure in this model VSB, the
range of viscosity is initially chosen to keep the flow in a laminar, steady regime. This will permit
a more straightforward assessment of performance of the OBC implementation without having
to consider effects arising from a turbulence model. Assessment of two representative turbulence
models is then presented in Section 5.

4. LAMINAR FLOW RESULTS

A 3-D general curvilinear code employing SIMPLE as the solution algorithm was developed to
investigate the flow field in the VSB. This code also contains a free-surface tracking capability
(using a volume of fluid, piecewise linear interface calculation due to Gueyffier et al. [18]), but
as a first step we employed the code with a Cartesian grid, and without free-surface modelling.
The code was initially validated using standard 3-D benchmarks such as laminar and turbulent
duct flow and laminar lid-driven cavity flow. In this section of the paper, results from numerical
simulation of laminar flow in a simplified VSB are presented. These results are used to test the
OBC procedure and to interpret the flow behaviour in the cubical model VSB.
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4.1. Grid-function convergence test

Since there are no previous experimental or numerical data for this specific test case and further-
more, experimental measurement near the swirling outlet is very difficult, the calculation cannot
be validated using extant results. Hence, grid-function convergence tests will be used to verify the
numerical results. These tests provide an indication that the discrete equations are being solved cor-
rectly and that the numerical approximation is consistent with the analytical governing equations.
To extract the order of accuracy, solutions on three different grids are required. If grid refinement
is performed with constant ratio r , the observed order of accuracy q can be extracted from

q = ln

(‖ f3 − f2‖
‖ f2 − f1‖

)/
ln r (11)

as given by Roache [19]. Note that f1 is the solution computed on the finest grid, and the strong L2

norm is used to calculate solution differences used in Equation (11). Solutions were obtained on
grids containing 203, 403 and 803 (denoted as grid 3, grid 2 and grid 1, respectively) grid cells with
Reynolds number Re= 1000 based on the inlet channel width and inlet velocity. The power-law
and QUICK schemes were used to discretize convective terms, and grid-function convergence tests
were calculated for both methods individually. These results, computed in the entire domain for the
velocity components and pressure, are listed in Table I. It is noteworthy that the QUICK scheme
is always replaced by the power-law scheme near all boundaries. The results are fairly close to the
formal order of accuracy for power-law and QUICK schemes which are first- and second-order
accurate, respectively. Due to very small values of the vertical velocity component v in a major part
of the domain, truncation (and possibly rounding) error may dominate computed values causing
order of accuracy for v to be lower than expected for both power-law and QUICK schemes. These
effects were worst at the outlet channel where this velocity component is negligible.

To avoid introducing points outside the computational domain we have to use the power-law
scheme to discretize convection terms and first-order backward differencing in vorticity transport
equations which decrease the order of accuracy particularly for tangential velocity components. The
maximum error values for these also occur near the open channel in agreement with the previous
results. Recall that by definition of vorticity, the normal velocity components also are affected
at the outlet channel. Order of accuracy at the OBs can be improved by higher-order backward
differencing in the vorticity definition and transport equations. Note that more refined gridding,
which is hard to accomplish using a serial code, is required to achieve asymptotic convergence at
the bottom outlet.

Table I. Grid-function convergence test results for entire domain.

Scheme � f3 − f2 f2 − f1
f3− f2
f2− f1

q

Power-law U 6.6607 3.5003 1.9029 0.9282
V 1.1041 0.7355 1.5012 0.5861
W 4.6287 3.2175 1.4386 0.5246
P 6.9907 2.2640 3.0877 1.6265

QUICK U 9.0386 1.4246 6.3447 2.6656
V 1.8019 0.4564 3.9484 1.9813
W 7.2625 1.1463 6.3356 2.6635
P 10.4066 2.6289 3.9585 1.9850
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Figure 3. Velocity component profiles, computed using QUICK scheme, along lines: (a) y = 0.5, z = 0.5;
(b) x = 0.5, y = 0.5; (c) x = 1.0, y = 0.5; and (d) x = 0.5, y = 0.0.

To further analyse convergence of the solutions, velocity component profiles predicted on the
different grids are compared in Figure 3. Velocity profiles along the horizontal lines (y = 0.5,
z = 0.5) and (x = 0.5, y = 0.5) are shown in Figures 3(a) and (b). The profiles at the outlet channel
and bottom outlet are also depicted in Figures 3(c) and (d), respectively.U denotes the inlet velocity
magnitude that is used to normalize the velocity components (and to define Re). Notice that with
a 203-cell grid, there is only one point at the bottom outlet that can be used for grid-function
convergence analysis, and this is not sufficient. Nevertheless, the graphs reveal that the results are
converging to a grid-independent solution, and the equations are evidently being solved correctly.

4.2. Evaluation of the OBC

The velocity vectors at the bottom outlet and outlet channel calculated with an 803-cell grid and
QUICK scheme are depicted in Figure 4. Observe that a part of the flow leaves through the bottom
outlet while it is swirling (part (a)), and the other part exits the VSB after making a right-angle
turn toward the outlet channel (part (b)). This demonstrates the complexity of the flow structures
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Figure 4. Velocity vectors: (a) adjacent to bottom outlet; and (b) at the outlet channel.

near the outlets. The velocity component profiles normal to these outlets are depicted in Figure 5.
These profiles deviate significantly from those obtained using homogeneous Neumann boundary
conditions, as is often done for such outlets. In particular, the OBC procedure can capture the normal
derivative of the flow variables across the complicated OBs without any non-physical assumptions.
In light of the fact, mentioned earlier, that the OBCs used here collapse to homogeneous Neumann
conditions automatically in appropriate flow fields, we see from the results in Figure 5, showing
significant gradients at the outlets, that the often-used fully developed flow assumption is invalid
for the present case. While it must be admitted that solving momentum and vorticity equations at
OB increases the amount of arithmetic, it is clear that these help to solve the complicated problem
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Figure 5. Flow variable profiles normal to: (a) outlet channel; and (b) bottom outlet.

in a significantly smaller domain and thus decrease the overall computational cost. Moreover,
since this method allows the flow field to develop naturally, it also improves convergence to a true
physical situation in comparison to homogeneous Neumann boundary conditions.

In Figure 6 velocity profiles at the OBs calculated using two different methods (see Section 2.3)
to handle the normal velocity component at image points are compared. These are more distinctive
at the bottom outlet (part (b) of the figure) where the flow structure is more complicated and all
velocity components are effective. Notice that the method obtained by neglecting diffusion normal
to the boundary and first-order upwinding is simply denoted as NR in this figure.

The volume flow rate that exits the bottom outlet is also less than 10% of the inlet flow rate in
agreement with experimental results of Paul et al. [3]. The results reveal that by using the proposed
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Figure 6. Comparison between velocity profiles at the outlets, computed using two different methods to
handle normal velocity component at the image points.

OBC procedure, domains with multiple OBs can be simulated properly without requiring extra
algorithms to split inlet flow to several OB, and without any assumptions that are made to treat
the OBs in velocity–vorticity formulations [13].

4.3. Flow structure in the VSB

Although elaborate experimental studies have been carried out (e.g. [4]), flow structure in the VSB
is not yet fully understood. To shed light on these flow fields, the laminar results are analysed
in more detail. We remark that advanced turbulence models for 3-D computations will be needed
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Figure 7. Trajectories of fluid particles released from various points in the vortex settling basin.

to study the complexities of high-Re VSB flow fields, so it is worthwhile to begin with a careful
study of laminar flow that will not be contaminated by turbulence modelling effects.

To display flow trajectories, some streamlines started at the inlet are presented in Figure 7.
From the computed streamlines the following complex flow pattern can be discerned: some flow
from the inlet, entering mostly near mid height, goes directly to the outlet channel and exits; some
streamlines follow helical paths and approach the bottom outlet, but finally exit the outlet channel.
Others, initiated mainly near the bottom of the VSB, take very complicated helical paths and flush
through the bottom outlet. These indicate some long paths are taken from inlet to the bottom
outlet and reveal a quite complicated flow structure within the VSB, despite the fact that this is a
laminar flow. Apart from corner vortices (not displayed in this figure), the flow field qualitatively
resembles that in a cylindrical VSB, with a swirling flow structure near the bottom outlet as shown
in this figure.

The streamlines projected on horizontal and vertical planes are depicted in Figures 8 and 9.
From Figure 8 one can see that the vortex centre is displaced from the centre of the basin by
generally increasing amounts as distance from the centred bottom outlet port increases. Clearly,
the vortex deviates from a Rankine vortex, and the flow is not axisymmetric. Streamlines projected
to the vertical x–y and y–z planes at various z and x , respectively, locations (Figure 9) display
secondary flows toward the bottom outlet, particularly in Figures 9(a) and (b). Those vortices
with horizontal axes would move the sediment particles from the basin periphery to the central
orifice and flush them out in an actual VSB, as commented by Rea [1]. Hence, the axial velocity
component v is also effective in some parts of the domain despite its generally small magnitude;
and 2-D simulation cannot capture these vortices. From Figures 9(a) and (b) it can be clearly seen
that the secondary flows are stronger wherever inlet and outlet channels do not influence the flow
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14 A. N. ZIAEI ET AL.

Figure 8. Streamlines projected on planes: (a) y = 0.0125; (b) y = 0.0625; (c) y = 0.5;
(d) x = 0.25; (e) x = 0.5; and (f) x = 0.75.
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TO DEFINE CONDITIONS AT MULTIPLE OPEN BOUNDARIES IN A SIMPLIFIED VSB 15

Figure 9. Streamlines projected on constant-z planes: (a) z = 0.25; (b) z = 0.5; and (c) z = 0.75.

pattern. In addition, Figures 8(d), (e) and (f) show no significant secondary flows in constant-x
planes, with streamlines generally moving toward the central vortex, particularly near the basin
floor. Observe that all streamlines adjacent to the basin floor depicted in Figure 8(a) are directed
toward the bottom outlet, which supports the mentioned mechanism of sediment removal in the
VSB.

Although this simulation cannot be directly compared with experimental results from an actual
cylindrically shaped VSB, the values of the calculated velocities in the Cartesian coordinate
system can be transformed into tangential, radial and axial velocity components to allow some
qualitative comparison. Note that axial and vertical (v) velocity components are identical in the
two coordinate systems, modulo effects of coupling with u and w components that differ between
the coordinate systems. The velocity component profiles in horizontal planes at different distances
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Figure 10. Velocity profiles transformed to cylindrical coordinates along lines: (a) y = 0.5, z = 0.5;
(b) x = 0.5, y = 0.5; (c) y = 0.25, z = 0.5; (d) x = 0.5, y = 0.25; (e) y = 0.0625, z = 0.5; and
(f) x = 0.5, y = 0.0625. Velocity profiles transformed to the cylindrical coordinates along lines:

(g) y = 0.0, z = 0.5; and (h) x = 0.5, y = 0.0.
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Figure 10. Continued.

from the bottom outlet are shown in Figure 10. The values of velocity components are calculated
along two lines (viz. x = 0.5 and z = 0.5) on four horizontal cross-sections y = 0.0, 0.0625, 0.25
and 0.5. The tangential velocity component is dominant in the interior cross-sections. It tends to
increase with increasing radius (distance from the plane centre) until it reaches two maxima at
points (radius ≈ 0.32 and 0.42). At radial distances larger than those of these points, the tangential
velocity decreases proportionally with radius. Due to geometry of the inlet and outlets, profiles
of all velocity components have a strong asymmetrical character. The asymmetrical feature of the
flow remains significant even in the bottom port where the flow leaves the basin. However, one
can distinguish a forced vortex (fluid rotates as a solid body) forming around the centre and a free
vortex toward the periphery that qualitatively agree with experimental results (e.g. Julien [20]). The
tangential velocity decreases as the axial position approaches the bottom of the basin, and the axial
velocity increases gradually toward the bottom outlet. These variations are qualitatively supported
by experimental and computational studies in a hydrocyclone [11]. Although the tangential velocity
decreases rapidly near the bottom outlet, the radial velocity does not change significantly, revealing
the contribution of the radial velocity near the basin floor in flushing discharge through bottom
outlet shown in experimental studies [3].

5. TURBULENCE MODELLING

Although weaknesses of the Reynolds-averaged Navier–Stokes (RANS) equations have been
recognized since long ago, they are still in use because of lower computational cost in comparison
to large-eddy simulation (LES) or direct numerical simulation (DNS) for practical problems. DNS
is really far away from practical use, but LES possesses some desirable features, and it is now
the subject of much active research. However, LES is still not sufficiently inexpensive for most
practical flow calculations, and it also suffers from some shortcomings similar to those of RANS
models.

Here performance of two widely used high-Reynolds number two-equation RANS models, the
standard k–� method of Launder and Spalding [21] and the k–� model due to Wilcox [22], are
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studied to calculate turbulent flow in the VSB. The RANS equations are as follows:

�(�u)

�t
+ ∇ · (�uu) = − ∇ p + (� + �T)�u (12)

∇ · u= 0 (13)

where u is now the time-averaged velocity vector (u, v, w)T, � is constant fluid density, p is
time-averaged pressure, � is fluid viscosity and �T is turbulent eddy viscosity. The eddy viscosity
is the only term that must be modelled.

5.1. k–� model

In the standard k–� model, eddy viscosity is calculated as

�T = �C�
k2

�
(14)

where k is the turbulence kinetic energy, � is the dissipation rate and C� is a model constant that
must be assigned somewhat arbitrarily. The transport equations for k and � are

�(�k)

�t
+ ∇ · (�uk) =

(
� + �T

�k

)
�k + G − �� (15)

�(��)

�t
+ ∇ · (�u�) =

(
� + �T

��

)
�� + C�1

�

k
G − C�2�

�2

k
(16)

where G = �T(∇u + (∇u)T) : ∇u is the production of turbulence kinetic energy and : denotes
tensor scalar product. The model closure coefficients employed here are the ‘standard’ ones (see,
e.g. Wilcox [23]): C� = 0.09, �k = 1.0, �� = 1.3, C�1 = 1.44 and C�2 = 1.92.

5.2. k–� model

In the k–� model, eddy viscosity is obtained from

�T = �
k

�
(17)

where k is again the turbulence kinetic energy and � is the specific dissipation rate (the rate of
dissipation per unit turbulence kinetic energy). The transport equations for k and � are:

�(�k)

�t
+ ∇ · (�uk) = (� + �∗�T)�k + G − �∗�k� (18)

�(��)

�t
+ ∇ · (�u�) = (� + ��T)�� + 	

�

k
G − ���2 (19)

The model closure coefficients are: 	 = 5
9 , � = 3

40 , �∗ = 0.09, � = 0.5 and �∗ = 0.5.
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5.3. Wall function

The walls of the VSB are treated as no-slip surfaces, and wall shear stress, turbulence kinetic
energy and dissipation rate adjacent to the wall are calculated based on a wall function, as is
rather standard. The simplified form of the two-layer Cheing and Launder [24] model is adopted
to define the wall function for the present study. In this model the wall shear stress is evaluated as
in a standard wall function. Then the wall layer is divided into a viscous sublayer and a turbulent
outer region based on values of y+ defined here as

y+ = �C0.25
� k0.5y

�
(20)

where y is distance from the wall. For the average production in the fully turbulent region
(y+>11.22) the turbulent shear stress is assumed to be constant and equal to the wall shear
stress, while in the viscous sublayer the turbulent stress is assumed to be zero. The average dissi-
pation rate is obtained by assuming � to be constant in the viscous sublayer and equal to its wall
limiting value, such that k increases quadratically across the viscous sublayer. In the turbulent
region � varies according to the equilibrium length scale, and the turbulence kinetic energy is
assumed to be constant outside the sublayer. This model was chosen due to its non-equilibrium
feature of improved behaviour near solid walls in complicated geometries such as those of the
VSB, especially near inlets and outlets, where standard wall function assumptions are violated.

5.4. Turbulence properties at the OBs

Non-reflecting boundary conditions have been used in the extant literature (e.g. Wu [25]) to deal
with turbulence properties (k, � and �) at the OBs. Here we solve the transport equation for
these properties at OBs. To avoid introduction of properties outside the computational domain,
the diffusion term normal to the OBs, production and dissipation terms are all neglected, and a
first-order upwind scheme is used to treat convective terms. The resulting equations resemble usual
non-reflecting boundary conditions. However, these include the diffusion and convection terms in
tangential directions in the present case. To define turbulence properties, fully developed duct flow
is assumed at the inlet.

5.5. Turbulence modelling results

The RANS equations are discretized using the same approach as employed for laminar flow.
However, the power-law scheme is used uniformly to treat convection terms in turbulence prop-
erty transport equations, and all scalar turbulence quantities are evaluated at cell centres. All
computations to be presented here have been carried out at Re= 105, a typical value for VSB
operation.

The streamlines predicted on a 403-cell grid using the k–� model are plotted in Figure 11,
and streamlines projected onto horizontal and vertical planes are depicted in Figures 12 and 13,
respectively. Due to assumptions buried in the turbulence models, the predicted flow field is far
simpler than that of laminar flow at much lower Re (compare Figure 11 with Figure 7). The flow
is almost axisymmetric, and few secondary flows are observed due to massive numerical diffusion
arising from use of the Boussinesq hypothesis. As pointed out by Wilcox [23], all models based on
this hypothesis fail when flow experiences extra rate of strain caused by streamline curvature and
numerous other effects of 3-D flows. The implemented wall function also cannot predict streamline
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Figure 11. Some predicted streamlines started from inlet in the vortex settling basin using k–� model.

curvature and adverse pressure gradients of corner vortices. However, these discrepancies can be
circumvented to some extent by adding streamline curvature effects to the turbulence models.
Using more general wall functions (e.g. Craft et al. [26]) might also enhance the results to some
extent.

The flow structure near the outlets is shown in Figure 14. This figure shows the expected
swirling flow at the bottom outlet. The predicted flow structures near the outlets are generally
similar to the laminar case, and normal derivatives of velocity and pressure at these OBs are not
zero. The transformed velocity components of cylindrical coordinates are depicted in Figure 15.
These profiles clearly show the steep velocity gradient near the walls. There is also evidence of
free and forced vortex formation, but it is not as obvious as in the laminar flow. We note that
predicted velocity components obtained using the two turbulence models are essentially identical.
In particular, for this problem there appears to be no reason to prefer one over the other (but see
below).

Contour plots of turbulence properties are shown in Figures 16 and 17 corresponding to use of
k–� and k–� models, respectively. These values are normalized by inlet velocity, fluid density and
viscosity as: k = k∗/U 2, �= ��∗/�U 4, �= ��∗/�U 2, where ∗ superscripts denote dimensional
parameters. The maximum values of these quantities occur near the outlets, adjacent to the inlet
and somewhat generally near solid boundaries. Steep velocity gradients (not displayed here) near
the solid boundaries and at the outlet channel are observable, consistent with high values of
the turbulence quantities seen at these locations. But the highest values of these occur, rather
unexpectedly, at the inlet. In general, the two models produce qualitatively similar results for
turbulence kinetic energy, which can be directly compared between Figures 16(a) and 17(a); but
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Figure 12. Streamlines projected on horizontal planes: (a) y = 0.5 and (b) y = 0.025,
predicted using k–� model.
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Figure 13. Streamlines projected on vertical planes: (a) z = 0.25; (b) z = 0.5; (c) z = 0.75; (d) x = 0.25;
(e) x = 0.5; and (f) x = 0.75, predicted using k–� model.
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Figure 14. Velocity vector at open boundaries computed using k–� model.

that from the k–� model is approximately double that of the k–� model. We must emphasize,
however, that no adjustment from standard values has been made in closure constants for either
case; in particular, we have not as yet investigated whether these discrepancies can be reconciled.
Moreover, as noted earlier, there are not yet any experimental results available for this simplified
model to provide an absolute assessment of model strengths and deficiencies.

6. SUMMARY, CONCLUSIONS AND FUTURE WORK

In this paper a method to set boundary conditions at OB has been presented. This method allows us
to solve the 3-D incompressible N.–S. equations in a primitive-variable formulation in geometrically
complicated domains without employing any non-physical assumptions at outlets. Multiple OBs
can be simulated with no need to provide an extra algorithm for splitting the inlet flow rate among
several OBs. The method was implemented to treat two complicated OBs in a simplified VSB for
both laminar and turbulent flow regimes.

It was inferred from computed results that homogeneous Neumann boundary conditions cannot
correctly represent the flow structures at VSB outlets. The complicated laminar flow structure in
the VSB was analysed in detail, and preliminary assessment of two popular turbulence models
was made. These two-equation models could not properly simulate the flow field in the VSB due
to their dependence on the Boussinesq hypothesis, although they might be improved by adding
streamline curvature effects; and they should be calibrated using experimental data. Finally we note
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Figure 15. The turbulent velocity profiles transformed to cylindrical coordinates along:
(a) y = 0.5, z = 0.5; (b) x = 0.5, y = 0.5; (c) y = 0.25, z = 0.5; (d) x = 0.5, y = 0.25;

(e) y = 0.0, z = 0.5; and (f) x = 0.5, y = 0.0.
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Figure 16. Contour plots of: (a) k and (b) � on plane y = 0.5 computed using k–� model.
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Figure 17. Contour plots of: (a) k and (b) � on plane y = 0.5 computed using k–� model.
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that free-surface and turbulence modelling in general curvilinear coordinate systems are required
to simulate an actual VSB flow structure, and this will be the focus of future efforts.
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